展开
当前位置: 主页 > 商业大亨 >

 

阿尔法狗之父揭秘最强“狗”如何炼成 万圣节

发布日期:2017-10-19  来源:未知  浏览次数:
导读:阿尔法狗之父揭秘最强狗如何炼成 万圣节 伦敦当地时间10月18日18:00(北京时间19日01:00),谷歌旗下的DeepMind团队公布了进化后的最强版AlphaGo ,代号AlphaGo Zero。 新版本的AlphaGo究竟有多厉害?打败李世石的AlphaGo用了3000万盘比赛作为训练数据,Alp
阿尔法狗之父揭秘最强“狗”如何炼成 万圣节

     伦敦当地时间10月18日18:00(北京时间19日01:00),谷歌旗下的DeepMind团队公布了进化后的最强版AlphaGo ,代号AlphaGo Zero。
 
      新版本的AlphaGo究竟有多厉害?打败李世石的AlphaGo用了3000万盘比赛作为训练数据,AlphaGo Zero用了490万盘比赛数据。经过3天的训练,AlphaGo Zero就以100:0的比分完胜对阵李世石的那版AlphaGo。
 
      DeepMind联合创始人兼CEO 、AlphaGo之父戴密斯·哈萨比斯(Demis Hassabis)和AlphaGo团队负责人大卫·席尔瓦(Dave Sliver) 等人同时在官方博客上发表文章,详解最强版本阿尔法狗是如何炼成的,与前代有何不同。
      哈萨比斯
 
      与学习大量人类棋谱起步的前代AlphaGo不同,AlphaGo Zero是从“婴儿般的白纸”开始,通过3天数百万盘自我对弈,走完了人类千年的围棋历史,并探索出了不少横空出世的招法。
 
      哈萨比斯等人专文:《AlphaGo Zero:从零开始》
 
      席尔瓦在乌镇人机峰会上发言
 
      从语音识别、图像分类到基因和药物研究,人工智能发展迅速。这些专家系统,很多是借用海量人类经验和数据开发出来的。
 
      然而,在有些特定问题上,人类的知识要么过于昂贵,要么不靠谱,要么无法获得。因此,人工智能研究的一个长期目标就是跳过这一步,创造能在最有挑战性的领域,不用人类输入就达到超人水平的算法。我们发表在《自然》期刊上的最新论文,展示了实现该目标的关键一步。
 
      论文介绍了首个战胜人类围棋冠军的电脑程序AlphaGo的最新进化版本:AlphaGo Zero。AlphaGo Zero更为强大,可以一争史上最强围棋手。
 
      AlphaGo的前几代版本,一开始用上千盘人类业余和专业棋手的棋谱进行训练,学习如何下围棋。AlphaGo Zero则跳过了这个步骤,自我对弈学习下棋,完全从乱下开始。用这种方法,它很快超过了人类水平,对阵此前战胜人类冠军李世石的前代AlphaGo取得了100连胜。
 
      AlphaGo Zero之所以能当自己的老师,是用了一种叫强化学习的新模式。系统从一个对围棋一无所知的神经网络开始,将该神经网络和一个强力搜索算法结合,自我对弈。在对弈过程中,神经网络不断调整、升级,预测每一步落子和最终的胜利者。
 
      升级后的神经网络与搜索网络结合成一个更强的新版本AlphaGo Zero,如此往复循环。每过一轮,系统的表现就提高了一点点,自我对弈的质量也提高了一点点。神经网络越来越准确,AlphaGo Zero的版本也越来越强。
 
      这种技术比此前所有版本的AlphaGo都更为强大。这是因为,它不再受到人类知识的限制,而能够从婴儿般的白纸状态,直接向世界上最强大的棋手——AlphaGo本身学起。
 
      AlphaGo Zero相较前代还有几点明显的差别:
 
      首先,AlphaGo Zero仅用棋盘上的黑白子作为输入,而前代则包括了小部分人工设计的特征输入。
 
      其次,AlphaGo Zero仅用了单一的神经网络。在此前的版本中,AlphaGo用到了“策略网络”来选择下一步棋的走法,以及使用“价值网络”来预测每一步棋后的赢家。而在新的版本中,这两个神经网络合二为一,从而让它能得到更高效的训练和评估。
 
      第三,AlphaGo Zero并不使用快速、随机的走子方法。在此前的版本中,AlphaGo用的是快速走子方法,来预测哪个玩家会从当前的局面中赢得比赛。相反,新版本依靠的是其高质量的神经网络来评估下棋的局势。
 
      所有这些差异,都提高了系统的表现,使其更为普适。不过,是算法上的变化使得系统更为强大和高效。
 
      仅仅自我对弈3天后,AlphaGo Zero就以100:0完胜了此前击败世界冠军李世石的AlphaGo版本。自我对弈40天后,AlphaGo Zero变得更为强大,超过了此前击败当今第一人柯洁的“大师”版AlphaGo。
 
      通过数百万次自我对弈,AlphaGo从零开始掌握了围棋,在短短几天内就积累起了人类几千年才有的知识。AlphaGo Zero也发现了新的知识,发展出打破常规的策略和新招,与它在对战李世石和柯洁时创造的那些交相辉映,却又更胜一筹。
 
      这些创造性的时刻给了我们信心:人工智能会成为人类智慧的增强器,帮助我们解决人类正在面临的一些严峻挑战 。
 
      尽管才刚刚发展起来,AlphaGo Zero已经走出了通向上述目标的关键一步。如果类似的技术可以应用在其他结构性问题,比如蛋白质折叠、减少能耗和寻找新材料上,就能创造出有益于社会的突破。
 


    
网友评论
尚未注册畅言帐号,请到后台注册

  免责声明:① 凡本网所有原始/编译文章及图片、图表的版权均属 美国商业周刊所有,如要转载,需注明“信息来源:美国商业周刊”。

② 凡本网注明“信息来源:XXX(非美国商业周刊)”的作品,均转载自其他媒体,转载目的仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

Copyright 2006-2015 商业周刊 Corporation,All Rights Reserved

本站内容仅供用户参考,不能用作其他用途 | 本站转载或引用的文章涉及版权问题的,请与我们联系处理。